
Limits and Continuity 

- Know what left limits, right limits, and limits are. 

- Know how to compute simple limits. 

- Know what it means for a function to be continuous. 

- Know what is the L Hopital′s rule.  

 

 

Objectives 
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What is a limit? 

 A limit is what happens when you get 

closer and closer to a point without 

actually reaching it. 

 Example: If 𝑓(𝑥)  =  2𝑥 then as 𝑥 → 1, 

𝑓 𝑥 → 2. 

 We write this as lim
𝑥→1

𝑓 𝑥 = 2. 

 

 
x 0 .9 .99 .999 .9999 

f(x) 0 1.8 1.98 1.998 1.9998 
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Why are limits useful? 

 Many functions are not defined at a point 
but are well-behaved nearby. 

 Example: If 𝑓(𝑥)  =  
𝑥2−1

𝑥−1
 then 𝑓 1  is 

undefined. However, as 𝑥 → 1, 𝑓 𝑥 → 2, 
so lim

𝑥→1
𝑓 𝑥 = 2 . 
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x 0 .9 .99 .999 .9999 

f(x) 0 1.9 1.99 1.999 1.999 
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Left Limits and Right Limits 

x 
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f(x) 

Consider 𝑓(𝑥)  =  
𝑥

𝑥
. 𝑓 0  is undefined. As 

𝑥 → 0−, 𝑓(𝑥) = −1 

x -1 -.1 -.01 -.001 -.0001 

f(x) -1 -1 -1 -1 -1 

As 𝑥 → 0+, 𝑓(𝑥) = 1 

x 1 .1 .01 .001 .0001 

f(x) 1 1 1 1 1 

We write this as lim
𝑥→0−

𝑓 𝑥 = −1 , lim
𝑥→0+

𝑓(𝑥) = 1 
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Limit Definition Summary 

 We say that lim
𝑥→𝑎−

𝑓 𝑥 = 𝐿 if 𝑓 𝑥 → 𝐿 as 

𝑥 → 𝑎−  

 We say that lim
𝑥→𝑎+

𝑓 𝑥 = 𝐿 if 𝑓 𝑥 → 𝐿 as 

𝑥 → 𝑎+  

 If lim
𝑥→𝑎−

𝑓 𝑥 = lim
𝑥→𝑎+

𝑓 𝑥 = 𝐿 (i.e. it 

doesn’t matter which side x approaches 

a from then we say that lim
𝑥→𝑎

𝑓 𝑥 = 𝐿 
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 Limits can fail to exist in several ways 

1. lim
𝑥→𝑎−

𝑓 𝑥  or lim
𝑥→𝑎+

𝑓 𝑥  may not exist.  

- Example: sin
1

𝑥
 oscillates rapidly between 

0 and 1 as 𝑥 → 0+ (or 0−). Thus,  lim
𝑥→0+

sin
1

𝑥
 

DNE (does not exist)       

- Example: 
1

𝑥
 gets larger and larger as 𝑥 → 0+. 

We write this as  lim
𝑥→0+

1

𝑥
= ∞ 

2. lim
𝑥→𝑎−

𝑓 𝑥  and lim
𝑥→𝑎+

𝑓 𝑥  may both exist but 

have different values. Ex: 𝑓 𝑥 =
𝑥

|𝑥|
 near 

𝑥 = 0 

 

Absence of Limits 
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 To compute lim
𝑥→𝑎

𝑓 𝑥 :  

 If nothing special happens at 𝑥 = 𝑎, just 

compute 𝑓 𝑎 . Example: lim
𝑥→2

(3𝑥 − 1) = 5 

 If plugging in 𝑥 = 𝑎 gives 
0

0
, factors can 

often be cancelled when 𝑥 ≠ 𝑎. 

     Example: 

 lim
𝑥→2

(
𝑥2 −4

𝑥 −2
) = lim

𝑥→2
(

(𝑥−2)(𝑥+2)

𝑥 −2
) = lim

𝑥→2
(𝑥 + 2) = 4 

Computing Limits 
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Computing Limits 

Continued 

 Useful trick: 𝑎 − 𝑏 = 𝑎 − 𝑏 ∙
𝑎+𝑏

𝑎+𝑏
=

𝑎2−𝑏2

𝑎+𝑏
 

 Example: What is lim
𝑥→0

𝑥+1−1

𝑥
? 

lim
𝑥→0

𝑥 + 1 − 1

𝑥
= lim

𝑥→0

𝑥 + 1 − 1

𝑥
∙

𝑥 + 1 + 1

𝑥 + 1 + 1

= lim
𝑥→0

𝑥

𝑥( 𝑥 + 1 + 1)
= lim

𝑥→0

1

( 𝑥 + 1 + 1)
=

1

2
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Limits at Infinity 

 We can also consider what happens 

when 𝑥 → ∞ or 𝑥 → −∞. Example: 

Consider 𝑓 𝑥 =  
𝑥−1

𝑥
= 1 −

1

𝑥
. As x → ∞ 

(or −∞), 𝑓 𝑥 → 1. We write this as 

lim
𝑥→∞

𝑥−1

𝑥
= 1 

9 



Computing Limits at ±∞ 

 General strategy : figure out the 

largest terms and ignore 

everything else 

 Example: If 𝑓 𝑥 =  
3𝑥2−𝑥

4𝑥2+2𝑥 −5
 , as 

𝑥 → ∞ only the 3𝑥2 in the 

numerator and the 4𝑥2 will really 

matter, so lim
𝑥→∞

𝑓 𝑥 =  
3

4
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Limit Laws 

 If lim
𝑥→𝑎

𝑓 𝑥 = L and lim
𝑥→𝑎

𝑔 𝑥 = 𝑀 

then: 

 lim
𝑥→𝑎

(𝑓 𝑥 + 𝑔(𝑥)) = L + M 

 lim
𝑥→𝑎

(𝑓 𝑥 − 𝑔(𝑥)) = L − M 

 lim
𝑥→𝑎

(𝑓 𝑥 𝑔(𝑥)) = LM 

 lim
𝑥→𝑎

(
𝑓(𝑥)

𝑔(𝑥)
) =

𝐿

𝑀
 (if 𝑀 ≠ 0) 

 Etc. 
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Continuity 

 Definition: 𝑓 𝑥  is continuous at a if 

both 𝑓 𝑎  and lim
𝑥→𝑎

𝑓 𝑥  exist and are 

equal. 

 Note: Polynomials are always 

continuous everywhere. Most 

functions we will be working with are 

continuous almost everywhere. 
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Discontinuous functions 

𝑓 𝑥  may fail to be continuous at 𝑥 = 𝑎 
because: 

1. lim
𝑥→𝑎

𝑓 𝑥  or 𝑓 𝑎  does not exist. 

 Example: If 𝑓 𝑥 =  𝑥  then lim
𝑥→0

𝑓 𝑥  does 

not exist. 

 Example: If 𝑓 𝑥 =  
𝑥2−1

𝑥−1
 then 𝑓 1  is 

undefined. 

2. lim
𝑥→𝑎

𝑓 𝑥  or 𝑓 𝑎  both exist but have 

 different values. 

 Example: If  𝑓 𝑥 = 𝑥 −  𝑥  then lim
𝑥→1

𝑓 𝑥  

= 1 but 𝑓 1 = 0 
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L Hopital′s rule 

Johann Bernoulli 

1667 - 1748  



Zero divided by zero can not be evaluated, and is an example of 

indeterminate form. 

2

2

4
lim

2x

x

x




Consider: 

If we try to evaluate this by direct substitution, we get: 
0

0

In this case, we can evaluate this limit by factoring and canceling: 

2

2

4
lim

2x

x

x





  
2

2 2
lim

2x

x x

x

 



 

2
lim 2
x

x


  4



If we zoom in far enough, 

the curves will appear as 

straight lines. 

2

2

4
lim

2x

x

x






The limit is the ratio of the numerator over the denominator as x 

approaches 2. 

 
 

lim
x a

f x

g x
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2

2

4
lim

2x

x

x






 
 

lim
x a

f x

g x

-0.05

0

0.05

1.95 2 2.05
x

As 2x

 
 

f x

g x
becomes: 

df

dg

df

dg

dx

dx

df

x

dg

d





2

2

4
lim

2x

x

x






 
 

lim
x a

f x

g x

 

 

2

2

4

lim

2
x

d
x

dx
d

x
dx








2

2
lim

1x

x


 4

L’Hôpital’s Rule: 

If                      is indeterminate, then: 
 
 

lim
x a

f x

g x

 
 

 
 

lim lim
x a x a

f x f x

g x g x 








Example: 

20

1 cos
lim
x

x

x x



 0

sin
lim

1 2x

x

x



0

If we try to continue with L’Hôpital’s rule: 

0

sin
lim

1 2x

x

x


 0

cos
lim

2x

x




1

2


which is wrong, 

wrong, wrong! 

If it’s no longer indeterminate, 

then STOP! 



20

1 1
2lim

x

x
x

x

  

 
1

2

0

1 1
1

2 2lim
2x

x

x





 


0

0

0

0

0

0
not 

 
1

2

20

1
1 1

2lim
x

x x

x

  

 
3

2

0

1
1

4lim
2x

x




 


1

4

2




1

8
 

(Rewritten in 

exponential form.) 

On the other hand, you can apply L’Hôpital’s rule as 

many times as necessary as long as the fraction is still 

indeterminate: 



0

0
forms besides      . 

The following are also considered indeterminate: 




0  1 00

0

The first one,       , can be evaluated just like      . 




0

0

The others must be changed to fractions first. 

L’Hôpital’s rule can be used to evaluate other 

 indeterminate 



1
lim sin
x

x
x

 
 
 

This approaches 
0

0

1
sin

lim
1x

x

x



This approaches 0

We already know that 
0

sin
lim 1
x

x

x

 
 

 

but if we want to use L’Hôpital’s rule: 

2

2

1 1
cos

lim
1x

x x

x



   
    

   



1
sin

lim
1x

x

x



1
limcos
x x

 
  

 

 cos 0 1



1

1 1
lim

ln 1x x x

 
 

 

If we find a common denominator and subtract, we get: 

 1

1 ln
lim

1 lnx

x x

x x

  
   

Now it is in the form 
0

0

This is indeterminate form 

1

1
1

lim
1

ln
x

x
x

x
x



 
 

 
  
 

L’Hôpital’s rule applied once. 

0

0
Fractions cleared.  Still 

1

1
lim

1 lnx

x

x x x

 
 

  



1

1 1
lim

ln 1x x x

 
 

 

 1

1 ln
lim

1 lnx

x x

x x

  
   

1

1
1

lim
1

ln
x

x
x

x
x



 
 

 
  
 

1

1
lim

1 1 lnx x

 
 
  

1

2

1

1
lim

1 lnx

x

x x x

 
 

  


