Limits and Continuity

Objectives

- Know what left limits, right limits, and limits are.
- Know how to compute simple limits.
- Know what it means for a function to be continuous.
- Know what is the L Hopital's rule.

What is a limit?

- A limit is what happens when you get closer and closer to a point without actually reaching it.
- Example: If $f(x)=2 x$ then as $x \rightarrow 1$, $f(x) \rightarrow 2$.
- We write this as $\lim _{x \rightarrow 1} f(x)=2$.

x	0	.9	.99	.999	.9999
$\mathrm{f}(\mathrm{x})$	0	1.8	1.98	1.998	1.9998

Why are limits useful?

Many functions are not defined at a poir but are well-behaved nearby.
Example: If $f(x)=\frac{x^{2}-1}{x-1}$ then $f(1)$ is undefined. However, as $x \rightarrow 1, f(x) \rightarrow 2$, so $\lim _{x \rightarrow 1} f(x)=2$.

Left Limits and Right Limits

Consider $f(x)=\frac{x}{|x|} \cdot f(0)$ is undefined. As $x \rightarrow 0^{-}, f(x)=-1$

x	-1	-.1	-.01	-.001	-.0001
$f(x)$	-1	-1	-1	-1	-1

As $x \rightarrow 0^{+}, f(x)=1 \quad \mathrm{f}(\mathrm{x})$

x	1	.1	.01	.001	.0001
$f(x)$	1	1	1	1	1

We write this as $\lim _{x \rightarrow 0^{-}} f(x)=-1, \lim _{x \rightarrow 0^{+}} f(x)=1$

Limit Definition Summary

We say that $\lim _{x \rightarrow a^{-}} f(x)=L$ if $f(x) \rightarrow L$ as $x \rightarrow a^{-}$

We say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if $f(x) \rightarrow L$ as $x \rightarrow a^{+}$
If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$ (i.e. it doesn't matter which side x approaches a from then we say that $\lim _{x \rightarrow a} f(x)=L$

Absence of Limits

- Limits can fail to exist in several ways

1. $\lim _{x \rightarrow a^{-}} f(x)$ or $\lim _{x \rightarrow a^{+}} f(x)$ may not exist.

- Example: $\sin \left(\frac{1}{x}\right)$ oscillates rapidly between

0 and 1 as $x \rightarrow 0^{+}$(or 0^{-}). Thus, $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)$
DNE (does not exist)

- Example: $\frac{1}{x}$ gets larger and larger as $x \rightarrow 0^{+}$. We write this as $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$

2. $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ may both exist but have different values. Ex: $f(x)=\frac{x}{|x|}$ near $x=0$

Computing Limits

- To compute $\lim _{x \rightarrow a} f(x)$:
- If nothing special happens at $x=a$, just compute $f(a)$. Example: $\lim _{x \rightarrow 2}(3 x-1)=5$
- If plugging in $x=a$ gives $\frac{0}{0}$, factors can often be cancelled when $x \neq a$. Example:
$\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)=\lim _{x \rightarrow 2}(x+2)=4$

Computing Limits Continued

Useful trick: $a-b=(a-b) \cdot \frac{a+b}{a+b}=\frac{a^{2}-b^{2}}{a+b}$
Example: What is $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$?
$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} \\ &=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 0} \frac{1}{(\sqrt{x+1}+1)}=\frac{1}{2}\end{aligned}$

Limits at Infinity

- We can also consider what happens when $x \rightarrow \infty$ or $x \rightarrow-\infty$. Example: Consider $f(x)=\frac{x-1}{x}=1-\frac{1}{x}$. As $\mathrm{x} \rightarrow \infty$ (or $-\infty$), $f(x) \rightarrow 1$. We write this as $\lim _{x \rightarrow \infty} \frac{x-1}{x}=1$

Computing Limits at $\pm \infty$

- General strategy : figure out the largest terms and ignore everything else
- Example: If $f(x)=\frac{3 x^{2}-x}{4 x^{2}+2 x-5}$, as $x \rightarrow \infty$ only the $3 x^{2}$ in the numerator and the $4 x^{2}$ will really matter, so $\lim _{x \rightarrow \infty} f(x)=\frac{3}{4}$

Limit Laws

- If $\lim _{x \rightarrow a} f(x)=\mathrm{L}$ and $\lim _{x \rightarrow a} g(x)=M$ then:
- $\lim _{x \rightarrow a}(f(x)+g(x))=\mathrm{L}+\mathrm{M}$
- $\lim _{x \rightarrow a}(f(x)-g(x))=\mathrm{L}-\mathrm{M}$
- $\lim _{x \rightarrow a}(f(x) g(x))=$ LM
- $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{L}{M}$ (if $M \neq 0$)
- Etc.

Continuity

- Definition: $f(x)$ is continuous at a if both $f(a)$ and $\lim _{x \rightarrow a} f(x)$ exist and are equal.
Note: Polynomials are always continuous everywhere. Most functions we will be working with are continuous almost everywhere.

Discontinuous functions

$f(x)$ may fail to be continuous at $x=a$ because:

1. $\lim _{x \rightarrow a} f(x)$ or $f(a)$ does not exist.

- Example: If $f(x)=\lfloor x\rfloor$ then $\lim _{x \rightarrow 0} f(x)$ does not exist.
- Example: If $f(x)=\frac{x^{2}-1}{x-1}$ then $f(1)$ is undefined.

2. $\lim _{x \rightarrow a} f(x)$ or $f(a)$ both exist but have different values.

- Example: If $f(x)=\lceil x\rceil-\lfloor x\rfloor$ then $\lim _{x \rightarrow 1} f(x)$
$=\mathbf{1}$ but $f(1)=0$

L Hopital's rule

Johann Bernoulli 1667-1748

Consider:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Zero divided by zero can not be evaluated, and is an example of indeterminate form.

If we try to evaluate this by direct substitution, we get: $\frac{0}{0}$

In this case, we can evaluate this limit by factoring and canceling:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x / 2)}{x / 2}=\lim _{x \rightarrow 2}(x+2)=4
$$

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

The limit is the ratio of the numerator over the denominator as x approaches 2 .

If we zoom in far enough, the curves will appear as straight lines.
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

As $\quad x \rightarrow 2$
$\frac{f(x)}{g(x)}$ becomes:

$$
\frac{d f}{d g}=\frac{\frac{d f}{d x}}{\frac{d g}{d x}}
$$

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)}=\lim _{x \rightarrow 2} \frac{2 x}{1}=4
$$

L'Hôpital's Rule:

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is indeterminate, then:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Example:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{1+2 x}=0
$$

If it's no longer indeterminate, then STOP!

ITwo try to continue with L'Hôpital's rule:

On the other hand, you can apply L'Hôpital's rule as many times as necessary as long as the fraction is still indeterminate:

$\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{2}}-1-\frac{1}{2} x}{x^{2}} \quad \begin{aligned} & \text { (Rewritten in } \\ & \text { exponential form.) }\end{aligned}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\frac{1}{2}(1+x)^{-\frac{1}{2}}-\frac{1}{2}}{2 x} \longleftarrow \frac{0}{0} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{1}{4}(1+x)^{-\frac{3}{2}}}{2} \longleftarrow \text { not } \frac{0}{0} \quad=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}
\end{aligned}
$$

L'Hôpital's rule can be used to evaluate other indeterminate forms besides $\frac{0}{0}$.

The following are also considered indeterminate:
$\frac{\infty}{\infty}$
$\infty \cdot 0$

∞

∞^{0}
The first one, $\frac{\infty}{\infty}$, can be evaluated just like $\frac{0}{0}$.
The others must be changed to fractions first.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x \sin \frac{1}{x}\right) \\
& \lim _{x \rightarrow \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}}
\end{aligned}
$$

$$
\longleftarrow \text { This approaches }
$$

〔 This approaches

0

We already know that

$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1
$$

but if we want to use L'Hôpital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)}{-\frac{1}{\not x}} & =\lim _{x \rightarrow \infty} \cos \left(\frac{1}{x}\right) \\
& =\cos (0)=1
\end{aligned}
$$

$\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$

If we find a common denominator and subtract, we get:
$\lim _{x \rightarrow 1}\left(\frac{x-1-\ln x}{(x-1) \ln x}\right) \longleftarrow$ Now it is in the form $\frac{0}{0}$
$\lim _{x \rightarrow 1}\left(\frac{1-\frac{1}{x}}{\frac{x-1}{x}+\ln x}\right) \longleftarrow$ L'Hôpital's rule applied once.
$\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1+x \ln x}\right) \longleftarrow \quad$ Fractions cleared. Still $\frac{0}{0}$

$$
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)
$$

$$
\lim _{x \rightarrow 1}\left(\frac{1}{1+1+\ln x}\right)
$$

$$
\lim _{x \rightarrow 1}\left(\frac{x-1-\ln x}{(x-1) \ln x}\right)
$$

$$
\lim _{x \rightarrow 1}\left(\frac{1-\frac{1}{x}}{\frac{x-1}{x}+\ln x}\right)
$$

$$
\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1+x \ln x}\right)
$$

