# **Limits and Continuity**

#### **Objectives**

- Know what left limits, right limits, and limits are.
- Know how to compute simple limits.
- Know what it means for a function to be continuous.
- Know what is the L Hopital's rule.

#### What is a limit?

- A limit is what happens when you get closer and closer to a point without actually reaching it.
- Example: If f(x) = 2x then as  $x \to 1$ ,  $f(x) \to 2$ .
- We write this as  $\lim_{x \to 1} f(x) = 2$ .

| х    | 0 | .9  | .99  | .999  | .9999  |  |
|------|---|-----|------|-------|--------|--|
| f(x) | 0 | 1.8 | 1.98 | 1.998 | 1.9998 |  |

## Why are limits useful?

Many functions are not defined at a poir but are well-behaved nearby.

Example: If  $f(x) = \frac{x^{2}-1}{x-1}$  then f(1) is undefined. However, as  $x \to 1$ ,  $f(x) \to 2$ , so  $\lim_{x \to 1} f(x) = 2$ .

| x    | 0   | .9          | .99   | .999  | .9999 | -2         |      |            |            |   |
|------|-----|-------------|-------|-------|-------|------------|------|------------|------------|---|
|      |     |             |       |       |       | <b>_</b> _ |      |            |            |   |
| f(x) | 0   | 1.9         | 1.99  | 1.999 | 1.999 | -3         |      |            |            |   |
|      |     |             |       |       |       |            |      |            |            |   |
|      |     |             |       |       |       | ' -4       |      |            |            |   |
|      | Λ 4 | <b>)</b> _' | 2 - ′ | 1     |       |            |      |            |            |   |
|      |     |             |       |       |       | -4         | + −, | <b>5</b> - | <b>∠</b> - | I |
|      |     |             |       |       |       |            |      |            |            |   |

0123 x

#### **Left Limits and Right Limits**

Consider  $f(x) = \frac{x}{|x|}$ . f(0) is undefined. As  $x \to 0^{-}, f(x) = -1$ 4 3 -1 -.1 -.01 -.001 -.0001 Х 2 -1 -1 f(x) -1 -1 -1 f(x) 0 As  $x \to 0^+$ , f(x) = 1-1 .01 .001 .0001 1 .1 Х -2 1 1 f(x) 1 1 1 -3 -4 -4 -3 -2 -1 0 1 2 3 4

We write this as  $\lim_{x\to 0^-} f(x) = -1$ ,  $\lim_{x\to 0^+} f(x) = 1$ 

## **Limit Definition Summary**

We say that  $\lim_{x \to a^-} f(x) = L$  if  $f(x) \to L$  as  $x \to a^-$ 

We say that  $\lim_{x \to a^+} f(x) = L$  if  $f(x) \to L$  as  $x \to a^+$ 

If  $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$  (i.e. it doesn't matter which side x approaches a from then we say that  $\lim_{x \to a} f(x) = L$ 

#### **Absence of Limits**

- Limits can fail to exist in several ways
- 1.  $\lim_{x \to a^-} f(x)$  or  $\lim_{x \to a^+} f(x)$  may not exist.
- Example:  $\sin\left(\frac{1}{x}\right)$  oscillates rapidly between 0 and 1 as  $x \to 0^+$  (or  $0^-$ ). Thus,  $\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right)$ DNE (does not exist)
- Example:  $\frac{1}{x}$  gets larger and larger as  $x \to 0^+$ . We write this as  $\lim_{x \to 0^+} \frac{1}{x} = \infty$

2.  $\lim_{x \to a^{-}} f(x)$  and  $\lim_{x \to a^{+}} f(x)$  may both exist but have different values. Ex:  $f(x) = \frac{x}{|x|}$  near x = 0

## **Computing Limits**

- To compute  $\lim_{x \to a} f(x)$ :
- If nothing special happens at x = a, just compute f(a). Example:  $\lim_{x \to 2} (3x 1) = 5$
- If plugging in x = a gives  $\frac{0}{0}$ , factors can often be cancelled when  $x \neq a$ . Example:

 $\lim_{x \to 2} \left( \frac{x^2 - 4}{x - 2} \right) = \lim_{x \to 2} \left( \frac{(x - 2)(x + 2)}{x - 2} \right) = \lim_{x \to 2} (x + 2) = \mathbf{4}$ 

#### Computing Limits Continued

Useful trick:  $a - b = (a - b) \cdot \frac{a + b}{a + b} = \frac{a^2 - b^2}{a + b}$ Example: What is  $\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x}$ ?  $\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x} \cdot \frac{\sqrt{x + 1} + 1}{\sqrt{x + 1} + 1}$  $= \lim_{x \to 0} \frac{x}{x(\sqrt{x + 1} + 1)} = \lim_{x \to 0} \frac{1}{(\sqrt{x + 1} + 1)} = \frac{1}{2}$ 

#### **Limits at Infinity**

• We can also consider what happens when  $x \to \infty$  or  $x \to -\infty$ . Example: Consider  $f(x) = \frac{x-1}{x} = 1 - \frac{1}{x}$ . As  $x \to \infty$ (or  $-\infty$ ),  $f(x) \to 1$ . We write this as  $\lim_{x\to\infty} \frac{x-1}{x} = 1$ 

## Computing Limits at $\pm \infty$

- General strategy : figure out the largest terms and ignore everything else
- Example: If  $f(x) = \frac{3x^2 x}{4x^2 + 2x 5}$ , as  $x \to \infty$  only the  $3x^2$  in the numerator and the  $4x^2$  will really matter, so  $\lim_{x \to \infty} f(x) = \frac{3}{4}$

#### Limit Laws

- If  $\lim_{x \to a} f(x) = L$  and  $\lim_{x \to a} g(x) = M$ then:
- $\lim_{x \to a} (f(x) + g(x)) = L + M$
- $\lim_{x \to a} (f(x) g(x)) = L M$
- $\lim_{x \to a} (f(x)g(x)) = LM$
- $\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{L}{M} \text{ (if } M \neq 0 \text{)}$
- Etc.

#### Continuity

- Definition: f(x) is continuous at a if both f(a) and  $\lim_{x \to a} f(x)$  exist and are equal.
- Note: Polynomials are always continuous everywhere. Most functions we will be working with are continuous almost everywhere.

#### **Discontinuous functions**

f(x) may fail to be continuous at x = a because:

- **1.**  $\lim_{x \to a} f(x)$  or f(a) does not exist.
- Example: If  $f(x) = \lfloor x \rfloor$  then  $\lim_{x \to 0} f(x)$  does not exist.
- Example: If  $f(x) = \frac{x^2-1}{x-1}$  then f(1) is undefined.
- **2.**  $\lim_{x \to a} f(x)$  or f(a) both exist but have different values.
- Example: If f(x) = [x] [x] then  $\lim_{x \to 1} f(x) = 1$  but f(1) = 0

#### L Hopital's rule



Johann Bernoulli 1667 - 1748 Consider:

 $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$ 

Zero divided by zero can not be evaluated, and is an example of **indeterminate form**.

If we try to evaluate this by direct substitution, we get:  $\frac{0}{0}$ 

In this case, we can evaluate this limit by factoring and canceling:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$



The limit is the ratio of the numerator over the denominator as x approaches 2.





If we zoom in far enough, the curves will appear as straight lines.

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$ 



$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{\frac{d}{dx}(x^2 - 4)}{\frac{d}{dx}(x - 2)} = \lim_{x \to 2} \frac{2x}{1} = 4$$

#### L'Hôpital's Rule:

If  $\lim_{x \to a} \frac{f(x)}{g(x)}$  is indeterminate, then:  $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ 

Example:



On the other hand, you can apply L'Hôpital's rule as many times as necessary as long as the fraction is still indeterminate:



L'Hôpital's rule can be used to evaluate other indeterminate forms besides  $\frac{0}{0}$ .

The following are also considered indeterminate:

 $\frac{\infty}{\infty} \qquad \infty \cdot 0 \qquad \infty - \infty \qquad 1^{\infty} \qquad 0^{0} \qquad \infty^{0}$ The first one,  $\frac{\infty}{\infty}$ , can be evaluated just like  $\frac{0}{0}$ .

The others must be changed to fractions first.



but if we want to use L'Hôpital's rule:



$$\lim_{x \to 1} \left( \frac{1}{\ln x} - \frac{1}{x - 1} \right) \quad \longleftarrow \quad \text{This is indeterminate form} \quad \infty - \infty$$

If we find a common denominator and subtract, we get:



 $\lim_{x \to 1} \left( \frac{1}{\ln x} - \frac{1}{x - 1} \right)$  $\lim_{x \to 1} \left( \frac{1}{1 + 1 + \ln x} \right)$  $\lim_{x \to 1} \left( \frac{x - 1 - \ln x}{(x - 1) \ln x} \right)$  $\overline{2}$  $\lim_{x \to 1} \left( \frac{1 - \frac{1}{x}}{\frac{x - 1}{x} + \ln x} \right)$  $\lim_{x \to 1} \left( \frac{x-1}{x-1+x \ln x} \right) /$